Determination of the Representative Socioeconomic Level by BSA in the Mexican Republic

María Dolores Luquín-García, Edith Cecilia Macedo Ruíz, Omar Rojas-Altamirano, Carlos López-Hernández


The aim of this article is to determine the socioeconomic level (SEL) with disaggregation of the Basic Statistical Area (BSA) in the Mexican Republic. The methodology used is the one established by the Mexican Association of Market Research Agencies (AMAI) along with the National Institute of Statistics and Geography (INEGI). The Clustering of the BSAs was carried out according to variables contained in the Population and Housing Census of 2010, through Gaussian mixture models, learning neural networks and finally, by defining the labels corresponding to each SEL. We found the existence of a representative SEL for each BSA. In addition, the definition of each socioeconomic level shows good results with an average of 90.86% of correctly labeled elements.

Palabras clave

Segmentation; Clustering; SEL; BSA; Gaussian mixture; neural networks; labeling

Texto completo:

PDF (English)


Adnan, M., Longley, P. A., Singleton, A. D., & Brunsdon, C. (2010). Towards real-time geodemographics: Clustering algorithm performance for large multidimensional spatial databases. Transactions in GIS, 14(3), 283–297.

Aghdaie, M. H., Zolfani, S. H., & Zavadskas, E. K. (2013). A hybrid approach for market segmentation and market segment evaluation and selection: An integration of data mining and madm. Transformations in Business and Economics, 12(2 B).

Allenby, G., Fennell, G., Bemmaor, A., Bhargava, V., Dawley, J., Dickson, P., … Yang, S. (2002). Market Segmentation Research: Beyond within and across Group Differences. Marketing Letters, 13(3), 233–243.

AMAI. (2015). Actualización Regla AMAI de los Niveles Socioecónomicos 8x7. México, D.F. Retrieved from

Andrews, R. L., Brusco, M., Currim, I. S., & Davis, B. (2010). An empirical comparison of methods for clustering problems: Are there benefits from having a statistical model? Review of Marketing Science, 8(1).

Aparna, K., & Nair, M. K. (2015). Comprehensive study and analysis of partitional data clustering techniques. International Journal of Business Analytics (IJBAN), 2(1), 23–38.

Beane, T. P., & Ennis, D. M. (1987). Market Segmentation: A Review. European Journal of Marketing, 21(5), 20–42.

Bradley, R. H., & Corwyn, R. F. (2002). Socioeconomic status and child development. Annual Reviews in Psychology, 53, 371–399.

Brochado, A. O., & Martins, F. V. (2015). Identifying Small Market Segments with Mixture Regression Models. International Journal of Latest Trends in Finance and Economic Sciences, 4(4), 9.

Bukhari, S. S. (2011). Green Marketing and its impact on consumer behavior. Europian Journal of Business and Management, 3(4), 375–384.

Capó, M., Pérez, A., & Lozano, J. A. (2017). An efficient approximation to the K-means clustering for massive data. Knowledge-Based Systems, 117, 56–69.

Cliquet, G. (2013). Geomarketing: Methods and strategies in spatial marketing. John Wiley & Sons.

de la Garza García, J. (1995). Análisis de la informaci{ó}n mercadológica: a través de la estadística multivariante. Alhambra Mexicana.

Dickson, P. R., & Ginter, J. L. (1987). Market segmentation, product differentiation, and marketing strategy. The Journal of Marketing, 1–10.

Everitt, B., Landau, S., Leese, M., & Stahl, D. (2001). Cluster analysis.

Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A. Y., … Bouras, A. (2014). A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Transactions on Emerging Topics in Computing, 2(3), 267–279.

Fisher, C., Bashyal, S., & Bachman, B. (2012). Demographic impacts on environmentally friendly purchase behaviors. Journal of Targeting, Measurement and Analysis for Marketing, 20(3–4), 172–184.

Gan, G., Ma, C., & Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications. ASASIAM Series on Statistics and Applied Probability (Vol. 20).

George, M. R. W., Yang, N., Jaki, T., Feaster, D. J., Lamont, A. E., Wilson, D. K., & Van Horn, M. L. (2013). Finite mixtures for simultaneously modeling differential effects and nonnormal distributions. Multivariate Behavioral Research, 48(6), 816–844.

Gottfried, A. W. (1985). Measures of socioeconomic status in child development research: Data and recommendations. Merrill-Palmer Quarterly (1982-), 85–92.

Grekousis, G., & Thomas, H. (2012). Comparison of two fuzzy algorithms in geodemographic segmentation analysis: The fuzzy C-means and Gustafson-Kessel methods. Applied Geography, 34.

Gutiérrez, B. (2016). Antropología del consumidor tapatío. Guadalajara, Jalisco, México.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis. Vectors.

Heath, J. (2012). Lo que indican los indicadores: c{ó}mo utilizar la informaci{ó}n estad{’i}stica para entender la realidad econ{ó}mica de M{é}xico.

Hiziroglu, A. (2013). A neuro-fuzzy two-stage clustering approach to customer segmentation. Journal of Marketing Analytics, 1(4), 202–221.

Hollingshead, A. . (1975). Four Factor index of social status (No. 208265). New Haven.

INEC. (2013). Determinación de los coeficientes de variación. Quito, Ecuador.

INEGI. (2002). Regiones Socioecónomicas de México. México, D.F.

Kim, T., & Lee, H.-Y. (2011). External validity of market segmentation methods: a study of buyers of prestige cosmetic brands. European Journal of Marketing, 45(1/2), 153–169.

Kotler, P., & Armstrong, G. (2012). Marketing.

Krawczyk, B. (2016). Knowle dge-Base d Systems Dynamic classifier selection for one-class classification, 107, 43–53.

Larsen, N. (2010). Market Segmentation - A Framework for Determining the Right Target Customers. Aarhus School of Business. Retrieved from

Levin, R. I., & Rubin, D. S. (2004). Estadística para administración y economía. Pearson Educación.

Lin, T. I., Lee, J. C., & Yen, S. Y. (2007). Finite mixture modelling using the skew normal distribution. Statistica Sinica, 909–927.

Lopes, L. A., Machado, V. P., Rabêlo, R. A. L., Fernandes, R. A. S., & Lima, B. V. A. (2016). Knowle dge-Base d Systems Automatic labelling of clusters of discrete and continuous data with supervised machine learning. Knowledge-Based Systems, 106, 231–241.

Lopes, L. A., Machado, V. P., & Rabelo, R. D. A. L. (2014). Automatic cluster labeling through Artificial Neural Networks. Proceedings of the International Joint Conference on Neural Networks, 762–769.

Masyn, K. E. (2013). Latent class analysis and finite mixture modeling. In The Oxford Handbook of Quantitative Methods in Psychology: Vol. 2.

Mihić, M., & Čulina, G. (2006). Buying behavior and consumption: social class versus income. Management, 11(2), 77–92.

Momeni, M., Yazdani, S., & Khorshidi, M. F. (2016). Clustering customers by C-mean method (Case study: Golestan company). International Business Management, 10(8).

Müller, H., & Hamm, U. (2014). Stability of market segmentation with cluster analysis – A methodological approach. Food Quality and Preference, 34, 70–78.

Musyoka, S. M., Mutyauvyu, S. M., Kiema, J. B. K., Karanja, F. N., & Siriba, D. N. (2007). Market segmentation using geographic information systems (GIS): A case study of the soft drink industry in Kenya. Marketing Intelligence & Planning, 25(6), 632–642. 10.1108/02634500710819987

Nosi, C., Pratesi, C. A., & D’agostino, A. (2014). A benefit segmentation of the Italian market for full electric vehicles. Journal of Marketing Analytics, 2(2), 120–134.

O’Hagan, A., Murphy, T. B., Gormley, I. C., McNicholas, P. D., & Karlis, D. (2016). Clustering with the multivariate normal inverse Gaussian distribution. Computational Statistics & Data Analysis, 93, 18–30.

Pan, W., Shen, X., & Liu, B. (2013). Cluster analysis: unsupervised learning via supervised learning with a non-convex penalty. Journal of Machine Learning Research, 14(1), 1865–1889.

Ruiz, F. J., Angulo, C., & Agell, N. (2008). IDD: A supervised interval distance-based method for discretization. IEEE Transactions on Knowledge and Data Engineering, 20(9), 1230–1238.

Samarasinghe, S. (2016). Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. CRC Press.

Sánchez-hernández, G., Chiclana, F., Agell, N., & Carlos, J. (2013). Knowledge-Based Systems Ranking and selection of unsupervised learning marketing segmentation, 44, 20–33.

Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). Mclust 5: Clustering, classification and density estimation using gaussian finite mixture models. The R Journal, 8(1), 289.

Scrucca, L., & Raftery, A. E. (2015). Improved initialisation of model-based clustering using Gaussian hierarchical partitions. Advances in Data Analysis and Classification, 9(4), 447.

Suhaibah, A., Uznir, U., Rahman, A. A., Anton, F., Mioc, D., Estate, R., & Segmentation, M. (2016). 3D GEOMARKETING SEGMENTATION : A HIGHER SPATIAL DIMENSION PLANNING PERSPECTIVE, XLII(October), 3–5.

Ultsch, A. (2002). Emergent self-organising feature maps used for prediction and prevention of churn in mobile phone markets. Journal of Targeting, Measurement and Analysis for Marketing, 10(4), 314–324.

Vajda, S., Rangoni, Y., & Cecotti, H. (2015). Semi-automatic ground truth generation using unsupervised clustering and limited manual labeling: Application to handwritten character recognition. Pattern Recognition Letters, 58, 23–28.

Vera-Romero, O. E., & Vera-Romero, F. M. (2015). Evaluación del nivel socioeconómico: presentación de una escala adaptada en una población de Lambayeque. Rev. Cuerpo Méd. HNAAA, 6(1), 41–45.

Wang, H., & Zaniolo, C. (2000). CMP: a fast decision tree classifier using multivariate predictions. Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

Wedel, M., & Kamakura, W. A. (2012). Market Segmentation: Conceptual and Methodological Foundations. Springer Science & Business Media.

Winston, W. (2014). Marketing Analytics. Journal of Chemical Information and Modeling (Vol. 53).


Enlaces refback

  • No hay ningún enlace refback.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.