Determination of the Representative Socioeconomic Level by BSA in the Mexican Republic

Resumen

The aim of this article is to determine the socioeconomic level (SEL) with disaggregation of the Basic Statistical Area (BSA) in the Mexican Republic. The methodology used is the one established by the Mexican Association of Market Research Agencies (AMAI) along with the National Institute of Statistics and Geography (INEGI). The Clustering of the BSAs was carried out according to variables contained in the Population and Housing Census of 2010, through Gaussian mixture models, learning neural networks and finally, by defining the labels corresponding to each SEL. We found the existence of a representative SEL for each BSA. In addition, the definition of each socioeconomic level shows good results with an average of 90.86% of correctly labeled elements.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

María Dolores Luquín-García, Universidad Panamericana

Licenciada en Administración y Mercadotecnia por la Universidad Panamericana campus Guadalajara. Maestría en Ingeniería por la misma universidad, con las especialidades en Optimización de Sistemas Productivos y en Dirección de Operaciones. Actualmente estudia el Doctorado en Estudios Económicos en la Universidad de Guadalajara. 

Trabajó en agencias de investigación de mercados como IPSOS-BIMSA antes de incorporarse a Pinturas Prisa, en dónde se desempeñó como Jefe de Servicio al Cliente, Consultor Interno, Administrador de Ventas y Jefe de Inteligencia de Mercados.

Labora como profesor de tiempo completo de la Escuela de Ciencias Económicas y Empresariales en la Academia de Mercadotecnia; ha impartido las materias de Álgebra, Álgebra Lineal e Investigación de Operaciones. Asimismo, fue adjunta de las materias de Cálculo, Estadística I, Investigación de Mercados y Precios.

Edith Cecilia Macedo Ruíz, Universidad Panamericana

Licenciada en Economía por la Universidad de Guadalajara y Maestra en Economía por la misma universidad, con la especialidad de Comercio Internacional. Profesora de la Escuela de Ciencias Económicas y Empresariales en la materias de Álgebra, Álgebra Lineal, Cálculo y Econometría en la Universidad Panamericana.

Omar Rojas-Altamirano, Universidad Panamericana

Doctor en Matemáticas por la Universidad La Trobe, Australia. Es profesor investigador del Sistema Nacional de Investigadores (Nivel Candidato) en las áreas de matemáticas financieras, investigación de operaciones y director de proyectos de la Especialidad en Optimización de Sistemas Productivos. Es Director del Doctorado de Ciencias Empresariales y responsable de la Secretaría de Investigación de la Escuela de Ciencias Económicas y Empresariales de la Universidad Panamericana. Cuenta con varias publicaciones en revistas de arbitraje internacional en las áreas de Matemáticas Aplicadas, Finanzas y Estadística Matemática, así como participaciones en conferencias en Australia, Inglaterra, Canadá, Italia, España, Francia, China y México. 

Carlos López-Hernández, Universidad Panamericana

Estudió la Licenciatura en Administración de Empresas en la Universidad de las Américas Puebla, Becado de Excelencia por la Fundación Mary Street Jenkins (1992-1997). Tiene un Master en Dirección por el IPADE, con Beca de Excelencia. Obtuvo también una Especialidad en Política de Empresa por este Instituto (1998-2000). Es Doctor en Dirección de las Organización por la UPAEP, obtuvo Mención Honorífica por Investigación, Magna Cum Laude, por promedio y el Premio al Mejor Estudiante del Programa (2013). Como Consultor se ha especializado en temas de Balanced Scorecard, y Dirección, asesorando al Hospital de la Beneficencia Española, Hospital Betania, Secretaría de Educación Pública del Estado de Puebla, Grupo LALA, Tequila Sauza, entre otras. Consejero actualmente de empresas como Mexicandela, Eklemes Seguros, Kaluna y Peltor. En el 2014 fue Consejero Editorial de Noticias Nacionales del periódico Mural. Del 2006-2011 propietario de KARNICA y se desempeña desde el 2012 en la Universidad Panamericana como Director de la Escuela de Ciencias Económicas y Empresariales. 

Referencias

Adnan, M., Longley, P. A., Singleton, A. D., & Brunsdon, C. (2010). Towards real-time geodemographics: Clustering algorithm performance for large multidimensional spatial databases. Transactions in GIS, 14(3), 283–297. https://doi.org/10.1111/j.1467-9671.2010.01197.x

Aghdaie, M. H., Zolfani, S. H., & Zavadskas, E. K. (2013). A hybrid approach for market segmentation and market segment evaluation and selection: An integration of data mining and madm. Transformations in Business and Economics, 12(2 B).

Allenby, G., Fennell, G., Bemmaor, A., Bhargava, V., Dawley, J., Dickson, P., … Yang, S. (2002). Market Segmentation Research: Beyond within and across Group Differences. Marketing Letters, 13(3), 233–243.

AMAI. (2015). Actualización Regla AMAI de los Niveles Socioecónomicos 8x7. México, D.F. Retrieved from http://amai.org/privado/niveles.php

Andrews, R. L., Brusco, M., Currim, I. S., & Davis, B. (2010). An empirical comparison of methods for clustering problems: Are there benefits from having a statistical model? Review of Marketing Science, 8(1).

Aparna, K., & Nair, M. K. (2015). Comprehensive study and analysis of partitional data clustering techniques. International Journal of Business Analytics (IJBAN), 2(1), 23–38.

Beane, T. P., & Ennis, D. M. (1987). Market Segmentation: A Review. European Journal of Marketing, 21(5), 20–42. https://doi.org/10.1108/EUM0000000004695

Bradley, R. H., & Corwyn, R. F. (2002). Socioeconomic status and child development. Annual Reviews in Psychology, 53, 371–399. https://doi.org/10.1146/annurev.psych.53.100901.135233

Brochado, A. O., & Martins, F. V. (2015). Identifying Small Market Segments with Mixture Regression Models. International Journal of Latest Trends in Finance and Economic Sciences, 4(4), 9.

Bukhari, S. S. (2011). Green Marketing and its impact on consumer behavior. Europian Journal of Business and Management, 3(4), 375–384.

Capó, M., Pérez, A., & Lozano, J. A. (2017). An efficient approximation to the K-means clustering for massive data. Knowledge-Based Systems, 117, 56–69. https://doi.org/10.1016/j.knosys.2016.06.031

Cliquet, G. (2013). Geomarketing: Methods and strategies in spatial marketing. John Wiley & Sons.

de la Garza García, J. (1995). Análisis de la informaci{ó}n mercadológica: a través de la estadística multivariante. Alhambra Mexicana.

Dickson, P. R., & Ginter, J. L. (1987). Market segmentation, product differentiation, and marketing strategy. The Journal of Marketing, 1–10.

Everitt, B., Landau, S., Leese, M., & Stahl, D. (2001). Cluster analysis. https://doi.org/10.1177/014662167800200315

Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A. Y., … Bouras, A. (2014). A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Transactions on Emerging Topics in Computing, 2(3), 267–279.

Fisher, C., Bashyal, S., & Bachman, B. (2012). Demographic impacts on environmentally friendly purchase behaviors. Journal of Targeting, Measurement and Analysis for Marketing, 20(3–4), 172–184.

Gan, G., Ma, C., & Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications. ASASIAM Series on Statistics and Applied Probability (Vol. 20). https://doi.org/10.1111/j.1751-5823.2007.00039_2.x

George, M. R. W., Yang, N., Jaki, T., Feaster, D. J., Lamont, A. E., Wilson, D. K., & Van Horn, M. L. (2013). Finite mixtures for simultaneously modeling differential effects and nonnormal distributions. Multivariate Behavioral Research, 48(6), 816–844.

Gottfried, A. W. (1985). Measures of socioeconomic status in child development research: Data and recommendations. Merrill-Palmer Quarterly (1982-), 85–92.

Grekousis, G., & Thomas, H. (2012). Comparison of two fuzzy algorithms in geodemographic segmentation analysis: The fuzzy C-means and Gustafson-Kessel methods. Applied Geography, 34. https://doi.org/10.1016/j.apgeog.2011.11.004

Gutiérrez, B. (2016). Antropología del consumidor tapatío. Guadalajara, Jalisco, México.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis. Vectors. https://doi.org/10.1016/j.ijpharm.2011.02.019

Heath, J. (2012). Lo que indican los indicadores: c{ó}mo utilizar la informaci{ó}n estad{’i}stica para entender la realidad econ{ó}mica de M{é}xico.

Hiziroglu, A. (2013). A neuro-fuzzy two-stage clustering approach to customer segmentation. Journal of Marketing Analytics, 1(4), 202–221.

Hollingshead, A. . (1975). Four Factor index of social status (No. 208265). New Haven.

INEC. (2013). Determinación de los coeficientes de variación. Quito, Ecuador.

INEGI. (2002). Regiones Socioecónomicas de México. México, D.F.

Kim, T., & Lee, H.-Y. (2011). External validity of market segmentation methods: a study of buyers of prestige cosmetic brands. European Journal of Marketing, 45(1/2), 153–169.

Kotler, P., & Armstrong, G. (2012). Marketing.

Krawczyk, B. (2016). Knowle dge-Base d Systems Dynamic classifier selection for one-class classification, 107, 43–53. https://doi.org/10.1016/j.knosys.2016.05.054

Larsen, N. (2010). Market Segmentation - A Framework for Determining the Right Target Customers. Aarhus School of Business. Retrieved from http://pure.au.dk/portal/files/11462/ba.pdf

Levin, R. I., & Rubin, D. S. (2004). Estadística para administración y economía. Pearson Educación.

Lin, T. I., Lee, J. C., & Yen, S. Y. (2007). Finite mixture modelling using the skew normal distribution. Statistica Sinica, 909–927.

Lopes, L. A., Machado, V. P., Rabêlo, R. A. L., Fernandes, R. A. S., & Lima, B. V. A. (2016). Knowle dge-Base d Systems Automatic labelling of clusters of discrete and continuous data with supervised machine learning. Knowledge-Based Systems, 106, 231–241. https://doi.org/10.1016/j.knosys.2016.05.044

Lopes, L. A., Machado, V. P., & Rabelo, R. D. A. L. (2014). Automatic cluster labeling through Artificial Neural Networks. Proceedings of the International Joint Conference on Neural Networks, 762–769. https://doi.org/10.1109/IJCNN.2014.6889949

Masyn, K. E. (2013). Latent class analysis and finite mixture modeling. In The Oxford Handbook of Quantitative Methods in Psychology: Vol. 2.

Mihić, M., & Čulina, G. (2006). Buying behavior and consumption: social class versus income. Management, 11(2), 77–92.

Momeni, M., Yazdani, S., & Khorshidi, M. F. (2016). Clustering customers by C-mean method (Case study: Golestan company). International Business Management, 10(8). https://doi.org/10.3923/ibm.2016.1406.1413

Müller, H., & Hamm, U. (2014). Stability of market segmentation with cluster analysis – A methodological approach. Food Quality and Preference, 34, 70–78. https://doi.org/10.1016/j.foodqual.2013.12.004

Musyoka, S. M., Mutyauvyu, S. M., Kiema, J. B. K., Karanja, F. N., & Siriba, D. N. (2007). Market segmentation using geographic information systems (GIS): A case study of the soft drink industry in Kenya. Marketing Intelligence & Planning, 25(6), 632–642. https://doi.org/DOI: 10.1108/02634500710819987

Nosi, C., Pratesi, C. A., & D’agostino, A. (2014). A benefit segmentation of the Italian market for full electric vehicles. Journal of Marketing Analytics, 2(2), 120–134.

O’Hagan, A., Murphy, T. B., Gormley, I. C., McNicholas, P. D., & Karlis, D. (2016). Clustering with the multivariate normal inverse Gaussian distribution. Computational Statistics & Data Analysis, 93, 18–30.

Pan, W., Shen, X., & Liu, B. (2013). Cluster analysis: unsupervised learning via supervised learning with a non-convex penalty. Journal of Machine Learning Research, 14(1), 1865–1889.

Ruiz, F. J., Angulo, C., & Agell, N. (2008). IDD: A supervised interval distance-based method for discretization. IEEE Transactions on Knowledge and Data Engineering, 20(9), 1230–1238. https://doi.org/10.1109/TKDE.2008.66

Samarasinghe, S. (2016). Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. CRC Press.

Sánchez-hernández, G., Chiclana, F., Agell, N., & Carlos, J. (2013). Knowledge-Based Systems Ranking and selection of unsupervised learning marketing segmentation, 44, 20–33. https://doi.org/10.1016/j.knosys.2013.01.012

Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). Mclust 5: Clustering, classification and density estimation using gaussian finite mixture models. The R Journal, 8(1), 289.

Scrucca, L., & Raftery, A. E. (2015). Improved initialisation of model-based clustering using Gaussian hierarchical partitions. Advances in Data Analysis and Classification, 9(4), 447.

Suhaibah, A., Uznir, U., Rahman, A. A., Anton, F., Mioc, D., Estate, R., & Segmentation, M. (2016). 3D GEOMARKETING SEGMENTATION : A HIGHER SPATIAL DIMENSION PLANNING PERSPECTIVE, XLII(October), 3–5. https://doi.org/10.5194/isprs-archives-XLII-4-W1-1-2016

Ultsch, A. (2002). Emergent self-organising feature maps used for prediction and prevention of churn in mobile phone markets. Journal of Targeting, Measurement and Analysis for Marketing, 10(4), 314–324.

Vajda, S., Rangoni, Y., & Cecotti, H. (2015). Semi-automatic ground truth generation using unsupervised clustering and limited manual labeling: Application to handwritten character recognition. Pattern Recognition Letters, 58, 23–28.

Vera-Romero, O. E., & Vera-Romero, F. M. (2015). Evaluación del nivel socioeconómico: presentación de una escala adaptada en una población de Lambayeque. Rev. Cuerpo Méd. HNAAA, 6(1), 41–45.

Wang, H., & Zaniolo, C. (2000). CMP: a fast decision tree classifier using multivariate predictions. Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073). https://doi.org/10.1109/ICDE.2000.839444

Wedel, M., & Kamakura, W. A. (2012). Market Segmentation: Conceptual and Methodological Foundations. Springer Science & Business Media.

Winston, W. (2014). Marketing Analytics. Journal of Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004

Publicado
2018-09-23
Cómo citar
Luquín-García, M. D., Macedo Ruíz, E. C., Rojas-Altamirano, O., & López-Hernández, C. (2018). Determination of the Representative Socioeconomic Level by BSA in the Mexican Republic. Revista Perspectiva Empresarial, 5(2), 83-100. https://doi.org/10.16967/rpe.v5n2a6
Sección
Artículos